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Abstract

Background: Intervertebral disc degeneration (IVDD) is a primary cause of degenerative disc diseases; however, the
mechanisms underlying the degeneration remain unclear. The immunoinflammatory response plays an important
role in IVDD progression. The inflammatory cytokine lymphotoxin-α (LTα), formerly known as TNFβ, is associated
with various pathological conditions, while its role in the pathogenesis of IVDD remains elusive.

Methods: Real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting (WB), and enzyme-linked
immunosorbent assays were used to assess the levels of LTα in human nucleus pulposus (NP) tissues between
degeneration and control groups. The plasma concentrations of LTα and C-reactive protein (CRP) were compared
between healthy and IVDD patients. Rat primary NP cells were cultured and identified via immunofluorescence.
Methyl-thiazolyl-tetrazolium assays and flow cytometry were used to evaluate the effects of LTα on rat NP cell
viability. After NP cells were treated with LTα, degeneration-related molecules (Caspase-3, Caspase-1, matrix
metalloproteinase (MMP) -3, aggrecan and type II collagen) were measured via RT-qPCR and WB.

Results: The levels of both the mRNA and protein of LTα in human degenerated NP tissue significantly increased.
Plasma LTα and CRP did not differ between healthy controls and IVDD patients. Rat primary NP cells were cultured,
and the purity of primary NP cells was > 90%. Cell experiments showed inversely proportional relationships among
the LTα dose, treatment time, and cell viability. The optimal conditions (dose and time) for LTα treatment to induce
rat NP cell degeneration were 5 μg/ml and 48 ~ 72 h. The apoptosis rate and the levels of Caspase-3, Caspase-1, and
MMP-3 significantly increased after LTα treatment, while the levels of type II collagen and aggrecan were
decreased, and the protein expression levels were consistent with their mRNA expression levels.

Conclusions: This study demonstrated that elevated LTα is closely associated with IVDD and that LTα may induce
NP cell apoptosis and reduce important extracellular matrix (ECM) proteins, which cause adverse effects on IVDD
progress. Moreover, the optimal conditions for LTα treatment to induce NP cell degeneration were determined.
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Background
Intervertebral disc degeneration (IVDD) is well-
recognized as the pathological basis of degenerative disc
diseases [1]. More than 70% of the population will suffer
from degenerative disc diseases in their lifetime, which
places a serious burden on family and society [2].
IVDD initiates in the nucleus pulposus (NP) tissue [3].

Abnormal NP cell apoptosis and excessive extracellular
matrix (ECM) degradation are considered the main
causes of IVDD. The pathogenesis of IVDD is associated
with many factors, including aging, heredity, immunoin-
flammatory responses, metabolic disease, smoking, and
poor nutrition; however, the pathogenetic role of these
risk factors in IVDD is still not fully understood [4–9].
Among these factors, inflammatory cytokines play a cru-
cial role in IVDD via mediating the inflammatory re-
sponse, resulting in ECM degradation and disc cell
death and eventually leading to severe spinal degenera-
tive disease [10].
The tumor necrosis factor (TNF) superfamily has 19

members [11], and the most extensively studied inflam-
matory cytokine associated with IVDD is TNFα [12].
Lymphotoxin-α (LTα) is another vital member of the
TNF superfamily and has a crucial role in immunoin-
flammatory response, host defense, and immune system
development [13]. Since LTα and TNFα present many
similarities in terms of gene structure, protein molecular
structure, and biological functions, LTα was formerly
known as TNFβ. However, further studies revealed many
differences between TNFβ and TNFα, especially in cell
origin, secretion dynamics, signal transduction pathway,
and gene expression regulation [14], which resulted in
the renaming of TNFβ to LTα [14]. Recent studies sug-
gest that LTα is closely related to immunoinflammatory-
related diseases, such as rheumatoid arthritis (RA) [15]
and graft-versus-host disease (GVHD) [16]. However,
the relationship between LTα and IVDD has rarely been
evaluated. A recent study of intervertebral disc proteo-
mics analysis by our research team showed that LTα was
closely related to age-related IVDD [17].
To further probe the role of LTα in IVDD pathogen-

esis, the levels of LTα in human NP tissue and plasma
were determined and compared between normal con-
trols and IVDD patients. Rat NP cells were treated with
exogenous LTα, and the cell viability and degeneration-
related molecules were measured to evaluate the effects
of LTα on NP cells. The relationship between LTα and
IVDD as well as the associated clinical significance were
discussed from multiple perspectives.

Methods
Collection and grading of human NP tissues
Lumbar disc NP tissue samples were obtained during
spinal fusion surgery from patients with idiopathic

scoliosis or spinal trauma, and these patients had an
average age of 27.8 ± 5.2 years old (n = 15, including 8
males and 7 females) and were considered the control
group. The patients had no previous history of low back
pain. The degree of degeneration was classified as grade I-
II (Pfirrmann grading system) [18], which is usually con-
sidered clinically normal for discs [19, 20]. Lumbar disc
NP tissue samples were also collected during spinal fusion
surgery from patients diagnosed with lumbar spinal sten-
osis or discogenic low back pain, and these patients had
an average age of 60.1 ± 5.7 years old (n = 15, including 7
males and 8 females) and were considered the degener-
ation group. The degree of degeneration of these patients
was classified as grade IV. Magnetic resonance imaging
(MRI) confirmed that the discs were degenerated and
showed mild bulging without exhibiting obvious extru-
sion, sequestration or compression of the nerve root. All
patients were free from diabetes, liver or kidney disease,
tumors, immune system diseases or infections. The annu-
lus fibrosus (AF) and cartilage endplate were separated
and removed under a microscope. After resection and
washing with normal saline, NP tissues were stored in li-
quid nitrogen. Tissue collections were carried out under
sterile conditions. The clinical diagnosis was made by two
spine surgeons and a radiologist.

Blood collection and plasma C-reactive protein (CRP)
detection
Venous blood specimens were obtained from healthy
volunteers, who had an average age of 24.3 ± 2.1 years
old (n = 15, including 8 males and 7 females) and were
considered the control group, and the aforementioned
IVDD patients (n = 15) were used as the degeneration
group. MRI confirmed that the discs of the volunteers
were normal. Blood samples of IVDD patients were col-
lected before surgery. After centrifugation (10 min,
3000×g, 4 °C), plasma was collected and separated into
two tubes. One tube was used to measure the CRP con-
centration at the clinical laboratory and the other sample
was stored in liquid nitrogen until analysis.

Enzyme-linked immunosorbent assay (ELISA)
The NP tissues were cut into 1 mm3 pieces and ex-
tracted with lysis buffer (Cloud-Clone, China). After
ultrasound treatment and centrifugation, the supernatant
was obtained for the assay. The levels of cytokine LTα in
human NP tissues and plasma samples were determined
by a LTα-specific ELISA kit (Cloud-Clone). The detec-
tion range was from 15.6 pg/ml to1000 pg/ml, and the
sensitivity limit was 8 pg/ml.

Cell culture
Rat primary NP cells were purchased from Procell Life
Science & Technology (Cat No.: CP-R145, Lot No.:
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36I18010601; Procell, China). The NP cells were pas-
saged twice or three times before the experiments. In
brief, four-week-old Sprague-Dawley rats from the
Hubei Provincial Center for Disease Control and Preven-
tion (Wuhan, China) were sacrificed via broken neck.
The entire spine was obtained, and NP tissues were iso-
lated from the lumbar region. The NP tissues were then
cut into 1 mm3 pieces and digested by 0.2% Dispase II
(Cat No.: D4693-1G; Sigma, USA) and 0.2% type II col-
lagenase (Cat No.: C6885-25MG; Sigma) at 37 °C for 4 h.
After a pipette was used to lightly blowing on the
digested tissues 20 times, the tissues were filtered
through a 200-mesh strainer. The filtrate was then col-
lected and centrifuged (300×g, 5 min), and the seed cells
were cultured in rat NP cell medium (Cat No.: CM-
R145; Procell) at 37 °C under 5% CO2.

Immunocytofluorescence
Immunofluorescence identification of primary rat NP
cells was carried out by Procell. In brief, primary NP
cells were fixed with 4% paraformaldehyde (Sinopharm,
China) before permeabilization with 0.5% Triton X-100
(Beyotime, China). The cells were incubated with anti-
type II collagen antibody (1:100, Cat No.: BA0533; Bos-
ter, China) at 4 °C overnight and then with Cy3-labeled
secondary antibody (1:100, Cat No.: BA1032; Boster) at
room temperature for 1 h. The nuclei were counter-
stained with 4,6-diamino-2-phenyl indole (DAPI) (Beyo-
time). A fluorescence microscope (BX53, Olympus, Japan)
was used for image capture. The positive cells under five
random high-power fields were counted under a light
microscope, and the purity of NP cells was assessed by de-
termining the type II collagen-positive cell rate.

Methyl-thiazolyl-tetrazolium (MTT) cell viability assay
Time- and dose-dependent experiments were performed
to evaluate the effects of LTα on rat NP cells. The sur-
vival rate was determined via MTT assay to identify the
optimal treatment conditions. Briefly, after seeding in
96-well plates (7 × 103 cells per well), P3 NP cells in the
experimental and control groups were cultured to the
logarithmic growth phase before treatment. To evaluate
the dose dependence, different concentrations of LTα (0,
0.01, 0.1, 1, 2, 3, and 5 μg/ml) (Cat No.: 10270-HNAE;
Sino Biological, China) were added to the experimental
group and incubated for 72 h. To evaluate the time de-
pendence, LTα (5 μg/ml) was added to the experimental
group and incubated for 24 h, 48 h, and 72 h. Equal vol-
umes of sterile phosphate buffered saline (PBS) were
added to the control group. MTT (Sigma) solution and
dimethyl sulfoxide (DMSO) (Sigma) were added in
turns, and the optical density (OD) values were tested as
reported in previous method [21].

Rat NP cell treatment
To evaluate the effects of LTα on NP cells, P3 NP cells
were seeded in 6-well plates (2.5 × 105 cells per well) and
divided into an experimental group and a control group.
The NP cells were cultured to the logarithmic growth
phase before treatment. LTα (5 μg/ml) and an equal vol-
ume of PBS were added to the experimental and control
groups, respectively. The cells were cultured at 37 °C
under 5% CO2 for 72 h and then collected for flow cy-
tometry (FCM) and Western blotting (WB) analysis.

FCM analysis of cell apoptosis
After the LTα treatment, FCM was used to evaluate cell
apoptosis with an Annexin V-FITC/PI apoptosis detec-
tion kit (Vazyme, China). Briefly, after each group was
treated, the cells were centrifuged, resuspended in bind-
ing buffer, and then stained with Annexin V-FITC and
PI. Cells in the early and late apoptotic stages were
counted.

RNA extraction and real-time quantitative polymerase
chain reaction (RT-qPCR)
Total RNA was extracted from human NP tissues with
TRIzol reagent (Thermo Fisher, USA), and extracted
from rat NP cells with a Takara MiniBEST Universal
RNA Extraction Kit (Takara, Japan) according to the
manufacturer’s guidelines. First-strand cDNA was syn-
thesized using Hifair® II 1st Strand cDNA Synthesis
SuperMix for qPCR (gDNA Digester Plus) (Yeasen Bio-
tech, China). RT-qPCR was performed using a Bio-Rad
real-time PCR system with Hieff® qPCR SYBR Green
Master Mix (No Rox) (Yeasen Biotech) following the
standard procedure. The sequences of primers used are
shown in Table 1. The GAPDH housekeeping gene was
used as the internal control.

Protein extraction and WB
Total proteins were extracted from human NP tissues
and rat NP cells using RIPA lysis buffer (Beyotime), and
their concentrations were determined using the BCA
method (Beyotime). Subsequently, 25 μg of protein was
loaded onto 8% or 12% separation gel and 5% stacking
gel and subjected to SDS-PAGE. After transferring the
proteins to PVDF membranes (Beyotime), the mem-
branes were blocked in 5% nonfat dry milk with TBST
and then treated with specific antibodies. The following
primary antibodies were used: LTα (1:1000, Cat No.:
DF6453; Affinity Biosciences, USA), type II collagen (1:
1000, Cat No.: 28459–1-AP; Proteintech, China), aggre-
can (1:1000, Cat No.: 13880–1-AP; Proteintech),
Caspase-1 (1:1000, Cat No.: 22915–1-AP; Proteintech),
Caspase-3 (1:1000, Cat No.: 19677–1-AP; Proteintech),
matrix metalloproteinase (MMP)-3 (1:1000, Cat No.:
66338–1-lg; Proteintech), and GAPDH (1:5000, Cat No.:
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ATPA00013Rb; AtaGenix, China). HRP- conjugated goat
to rabbit IgG (1:5000, Cat No.: SA00001–2; Proteintech)
and HRP- conjugated goat to mouse IgG (1:5000, Cat
No.: SA00001–1; Proteintech) were used as secondary
antibodies. The GAPDH housekeeping protein was used
as the internal control. Proteins were detected through
enhanced chemiluminescence and visualized using a gel
imaging system (Bio-Rad, USA). Semiquantitative ana-
lysis of the bands was performed by Image J (Image J
1.51j8, NIH, USA).

Statistical analysis
All the experiments were performed at least 3 times
(biological and technical replications). The data were
expressed as the means ± standard deviations. Independ-
ent Student’s t-tests were used to compare two groups.
A one-way analysis of variance and Tukey’s multiple
comparison test were used to compare multiple groups.
A P value of < 0.05 was considered statistically signifi-
cant. GraphPad Prism 7.04 (GraphPad Software, Inc.,
USA) was used to perform statistical analyses.

Results
Degenerated human discs presented a higher Pfirrmann
grade level and LTα was increased in human degenerated
NP tissues
The T2-weighted MRI of intervertebral discs in the con-
trol group showed hyperintense signals, a clear distinc-
tion between the AF and NP, and a normal disc height.
The discs were classified as grade I-II, which represented
normal discs (Fig. 1a, upper panel). However, discs in
the patients with degeneration showed hypointense sig-
nals, the disc heights were normal to moderately de-
creased, and the distinction between the AF and NP was

lost. The discs were classified as grade IV, which repre-
sented degenerated (Fig. 1a, bottom panel). WB, ELISA
and RT-qPCR were applied to detect the levels of LTα
in human NP tissues. Significantly increased production
of LTα was found in the degeneration group (Fig. 1b, c,
d and e).

Plasma LTα and CRP showed no differences between the
healthy controls and IVDD patients
The inflammatory marker CRP and cytokines can be in-
creased in the peripheral blood of patients with lumbar
disc herniation and thus have important significance for
clinical diagnosis and disease surveillance [22, 23]. To
identify a potential biomarker of non-herniated IVDD in
peripheral blood, we examined the plasma LTα and CRP
levels. The concentrations of plasma CRP in both the
control and degeneration groups were in the normal
range, and no significant difference was found (Fig. 2b).
The concentrations of LTα in both the control and de-
generation groups were very low and could not be de-
tected (Fig. 2b).

Inflammatory cytokine LTα caused a decrease in rat NP
cell viability and induced cell apoptosis
The purity of primary NP cells was > 90% as shown by
type II collagen immunofluorescent staining (Fig. 3a). P3
NP cells in monolayer cultures were treated or not with
increasing concentrations of LTα. After 72 h, cell viability
was determined by MTT. The survival rate decreased in
parallel with the increase in LTα concentration (Fig. 3b).
NP cell viability was significantly decreased when LTα was
5 μg/ml. Subsequently, NP cells were treated or not with
LTα (5 μg/ml) for various times. The survival rate de-
creased with time of cell exposure to LTα (Fig. 3c). A dose

Table 1 The sequences of primers of RT-qPCR

Gene Name Forward/ Reverse 5′-3′Sequence Size

LTα Forward CCTGGCTGCACTCGATGT 127 bp

Reverse GCGAAGGCTCCAAAGAAG

Caspase-3 Forward CTGGACTGCGGTATTGAG 102 bp

Reverse GGGTGCGGTAGAGTAAGC

Caspase-1 Forward CAGGAGGGAATATGTGGG 120 bp

Reverse AACCTTGGGCTTGTCTTT

MMP-3 Forward ACCTATTCCTGGTTGCTG 105 bp

Reverse GGTCTGTGGAGGACTTGTA

Aggrecan Forward TGAAACCACCTCTGCATTCCA 96 bp

Reverse GACGCCTCGCCTTCTTGAA

Type II collagen Forward GTCACAGAAGACCTCACGCCTC 81 bp

Reverse TCCACACCGAATTCCTGCTC

GAPDH Forward TCAAGAAGGTGGTGAAGCAGG 115 bp

Reverse TCAAAGGTGGAGGAGTGGGT
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of LTα at 5 μg/ml and an exposure time of 48 ~ 72 h were
defined as the optimal conditions for the LTα treatment
to induce rat NP cell degeneration.
After the LTα treatment (5 μg/ml, 72 h), FCM, RT-

qPCR and WB were used to evaluate the effect of LTα
on NP cell apoptosis. The apoptosis rate (Q2 + Q4) was
increased after the LTα treatment (Fig. 3d and e). The

mRNA and protein expression levels of Caspase-3 and
Caspase-1 also significantly increased (Fig. 4).

LTα upregulated MMP-3 expression and downregulated
the ECM protein levels
WB and RT-qPCR were used to determine the expres-
sion of degeneration-related molecules in NP cells in the

Fig. 1 Images of intervertebral disc degeneration and detection of LTα in human NP tissues. (A) Upper panel: normal disc in a MRI T2 image;
bottom panel: degenerated disc in a MRI T2 image. (B) Protein lysates from NP from the control and degeneration groups were blotted with anti-
LTα and anti-GAPDH antibodies. (C) Quantitative analysis of LTα protein levels as determined in “B”. (D) Concentration of LTα in NP tissue
determined by ELISA. (E) LTα mRNA production in NP tissue determined by RT-qPCR. Control group: relatively healthy disc samples from patients
with idiopathic scoliosis or spinal trauma; degeneration group: degenerated disc samples from patients with lumbar spinal stenosis or discogenic
low back pain. The GAPDH housekeeping gene/protein was used as the internal control. **. p < 0.01; ***. p < 0.001 (Unpaired, two-tailed
Student’s t-test)

Fig. 2 Determination of CRP and LTα in human plasma. (A) Schematic diagram of the plasma extraction. (B) The concentrations of plasma CRP in
both the control and degeneration groups were in the normal range, and no significant difference was found. The concentrations of plasma LTα
were determined by ELISA, and the values were low and could not be detected in both groups (n.d.: not detectable). Control group: blood
specimens from healthy volunteers (n = 15); degeneration group: blood specimens from IVDD patients (n = 15). p > 0.05 (Unpaired, two-tailed
Student’s t-test)
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control (PBS) and experimental (LTα treatment) groups.
The mRNA and protein expression of MMP-3 was signifi-
cantly increased in the experimental group, while that of type
II collagen and aggrecan, the core components of ECM, were
significantly decreased after the LTα treatment (Fig. 4).

Discussion
The new findings of this study include the following: 1)
LTα increased in the NP tissue associated with IVDD;
and 2) LTα could induce NP cell apoptosis and reduce
important ECM proteins, as indicated by in vitro testing.

Fig. 3 Immunofluorescence of primary NP cells and the effects of LTα on rat NP cell viability. (A) Immunofluorescence staining identified the rat
primary NP cells. Red fluorescence: type II collagen-positive primary NP cells; blue fluorescence: DAPI-stained nuclei. The positive rate of NP cells
was > 90%, and the purity of primary NP cells was > 90%. Scale bar: 50 μm. (B) Survival rate of rat NP cells that were treated or not with
increasing concentrations of LTα for 72 h as determined by the MTT assay. (C) Survival rate of rat NP cells that treated or not with LTα (5 μg/ml)
for various times as determined by the MTT assay. (D) LTα (5 μg/ml) and an equal volume of PBS were added to the experimental and control
groups for 72 h, respectively, and the apoptosis rates of rat NP cells were determined by FCM. The apoptosis rate (Q2 + Q4) in the experimental
group increased significantly (Q2: the late apoptotic stage; and Q4: the early apoptotic stage). (E) Statistical analysis of the apoptosis rate. ***, p <
0.001 (Unpaired, two-tailed Student’s t-test)
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In addition, the optimal conditions for LTα treatment to
induce rat NP cell degeneration was determined.
LTα is a member of the TNF superfamily and is one

of the earliest discovered cytokines. Studies have demon-
strated that LTα and TNFα have many similarities in
gene structure, protein molecular structure, and bio-
logical functions; thus, LTα was formerly known as
TNFβ [14]. However, further studies revealed many dif-
ferences between TNFβ and TNFα, especially in cell ori-
gin, secretion dynamics, signal transduction pathway,
and gene expression regulation. Both TNFα and LTα
can bind to TNF-receptors (TNFR1 or TNFR2); how-
ever, when LTα exists in heterotrimer form (LTα1β2 or
LTα2β1), it can also bind to another unique receptor, the
LTβ receptor (LTβR) [24]. In addition, the herpesvirus
entry mediator (HVEM) may also act as a receptor for
LTα [13]. Among these receptors, activated TNFR1 can
trigger an apoptotic cascade via TNFR-associated death
domain (TRADD); TNFR2, LTβR, and HVEM link to
intracellular signaling pathways via TNFR receptor-
associated factors (TRAFs); and TNFR1 can also regulate
TRAF2 via TRADD [13]. Because of stronger biological
effects on tumor-killing activity and immunoinflammatory
mediation, TNFα has received considerable amounts of at-
tention [14]. In contrast, few studies have investigated the
role of LTα, especially in IVDD pathology. In recent years,
the significance of cytokine LTα in various diseases has
been extensively investigated [15, 16]. These studies
showed close relationships between LTα and
immunoinflammatory-related diseases, such as RA and
GVHD. Studies have also shown that LTα can activate the

inflammatory environment in human chondrocytes [15]
and NP cells commonly exhibit chondrocyte-like charac-
teristics [25]. These potential connections inspired us to
further study the relationship between LTα and IVDD. In
this study and our previous work, the LTα level was sig-
nificantly increased in degenerated human NP tissue, sug-
gesting a potential correlation of LTα in the occurrence
and development of IVDD [17].
Abnormal apoptosis of NP cells is an important cause

of IVDD [26]. Excessive apoptosis of NP cells leads to
decreased cell viability, which results in decreased syn-
thesis of ECM. Caspase-3 is the most critical executive
molecule in mediating apoptosis [27]. Caspase-1 is a cru-
cial regulator of inflammatory mediator and has a vital
role in the death receptor-mediated apoptotic pathway
[28, 29]. We have shown that the apoptosis rates and the
Caspase-3 and Caspase-1 levels were significantly in-
creased after LTα treatment of NP cells. LTα can induce
apoptosis of NP cells, which leads to the reduced synthe-
sis of ECM, thereby suggesting a potential role of this
process in the acceleration of IVDD development.
Most MMPs in discs are produced by NP cells and

inner AF cells, and they are usually considered inactive
zymogens in normal discs [30]. Cascade amplification ef-
fects occur when MMPs are activated, which leads to
the degradation of the ECM. As a key enzyme in degrad-
ing disc ECM, MMP-3 not only directly degrades most
proteoglycans, gelatins, and collagens but also activates
other types of MMPs, thereby contributing to cascades
and accelerating ECM degradation [9, 31]. In this study,
MMP-3 was significantly upregulated in NP cells that

Fig. 4 Effects of LTα on degeneration-related molecules in rat NP cells. (A) P3 NP cells were plated on 6-well culture plates. LTα (5 μg/ml) and an
equal volume of PBS were added to the experimental and control groups for 72 h, respectively. Total proteins were extracted for the WB analysis.
Full image WB images have been provided in Supplementary 1. (B) Quantitative analysis of protein levels as determined in “A”. (C) Treatment
conditions were the same as that in “A”. Total mRNA was extracted for RT-qPCR analysis. *, p < 0.05; **. p < 0.01; ***. p < 0.001 (One-way ANOVA,
Tukey’s multiple comparison analysis)
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were treated with LTα, and type II collagen and aggre-
can, which are the core components of ECM, decreased.
These findings indicate that the reduction in these key
ECM proteins may lead to adverse effects on IVDD
progress.
LTα reduced NP cell viability, and significant correla-

tions were observed among the dose, treatment time,
and cellular survival rate. These findings indicate that
IVDD is a process wherein adverse effects associated
with inflammatory cytokines accumulate. Within a cer-
tain range, a longer time of LTα exposure at higher LTα
doses resulted in more severe NP cell degeneration.
Thus, we concluded that the optimal conditions (dose
and time) for LTα treatment to induce rat NP cell de-
generation are 5 μg/ml and 48 ~ 72 h. TNFα-induced
disc degeneration models have been widely utilized in
previous studies [32, 33]; however studies presented lim-
itations because of the severe toxicity of TNFα [34]. The
toxicity of LTα is much lower than that of TNFα, indi-
cating that LTα may have a potential value in the devel-
opment of disc degeneration models [34].
Anti-TNFα therapy is effective in treating many im-

munoinflammatory diseases, including degenerative disc
diseases and RA [35, 36]. Recent studies showed that up
to 50% of RA patients were insensitive or even resistant
to anti-TNFα treatment, while a combined treatment of
anti-TNFα and anti-LTα could achieve RA remission
[37, 38]. These cases not only indicated the value of
anti-LTα therapy in immunoinflammatory diseases but
also provided new insights and inspiration for a com-
bined anti-TNFα and anti-LTα treatment for degenera-
tive disc diseases. The similarities and differences
between LTα and TNFα could complement and enrich
each other in the treatment of diseases, thus achieving
better therapeutic effects.
Several limitations were observed to this study. First,

because fundamental research on the role of cytokine
LTα in disease is limited at present, the theoretical basis
of the relationship between LTα and degenerative dis-
eases, especially LTα and IVDD, is still in the initial
stage of exploration. The causality between the increase
in LTα and the pathogenesis of IVDD remains unclear,
and further studies are needed to explore the signal
transduction pathways by which elevated LTα causes
IVDD. In addition, the lack of a completely healthy disc
source is the most critical restrictive factor in basic re-
search on IVDD. Pathological and molecular changes
have been found in scoliotic or spinal traumatic disc tis-
sues [39, 40]. Nevertheless, when an absolutely healthy disc
specimen is absent, a relatively healthy disc obtained from a
patient with scoliosis or spinal trauma has been considered
as an ideal normal control sample by researchers in many
previous basic research studies [41, 42]. In addition, the
issue of age differences between groups associated with

limited clinical sample collections should not be ignored.
An absolutely healthy specimen from a donor would make
the results more accurate and reliable.

Conclusions
Available evidence indicates that the increase in LTα is
closely related to IVDD and LTα can induce NP cell
apoptosis and reduce important ECM proteins, which
may lead to adverse effects on IVDD progress. The re-
sults may provide insights on the pathogenic effects of
the cytokine LTα on NP cells and IVDD. Moreover, the
optimal conditions for LTα treatment to induce NP cell
degeneration were found. These findings may facilitate a
better understanding of the mechanisms of IVDD and
help identify new therapeutic targets for degenerative
disc diseases.
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